Broadband Dielectric Response in Hard and Soft PZT: Understanding Softening and Hardening Mechanisms

نویسنده

  • Li JIN
چکیده

Lead zirconate titanate (Pb(Zr1−xTix)O3 or PZT) ferroelectric ceramics have been widely used in transducers, actuators, and sensors, since they posses high dielectric and piezoelectric properties with a relatively high temperature of operation. Commercially used PZT ceramics are always modified by different dopants and are divided into the “soft” (donor doped) and “hard” (acceptor doped) groups. Compared with the undoped composition, hard PZT often shows lower but more stable properties after ageing. In contrast, soft PZT shows higher properties and insensitivity to ageing. The difference in properties between the soft and hard PZT ceramics is rather large, even though the doping level is limited to a very low value (on the order of 1 mole %). The large difference of the physical properties between them mainly originates from the contributions from domain wall motion rather than properties of the crystal lattice. However, the mechanisms of hardening and softening are not well understood. In order to understand better the hardening and softening mechanisms, in this thesis the different contributions to the dielectric properties of soft and hard PZT ceramics are studied by means of a broadband dielectric spectroscopy from 10mHz to 20GHz. Properties at THz and infrared frequencies where only crystalline lattice contributes to the dielectric response were also investigated in collaboration with another group. In the frequency range below 20GHz, the different contributions to the permittivity by domain wall motion were revealed in hard and soft materials. In order to correlate the properties to the microscopic structure of hard and soft PZT ceramics, the domain structures were also investigated by transmission electron microscopy. Piezoelectric spectroscopy was employed to help separating different contributions at frequencies below 100Hz. The main results of this work are: The microwave dielectric dispersion of all PZT ceramics (including undoped, soft and hard PZT ceramics), which is characterized by a rapid decrease of the permittivity and a loss peak in the GHz frequency range, is contributed by both domain wall motion and piezoelectric grain resonances. These two mechanisms are separated by gradual poling of samples. The dispersion related to the domain wall motion appears at a higher frequency than the one related to grain resonance and constitutes the main contribution to the microwave dielectric properties of unpoled samples. Above the GHz frequency range, the dielectric properties of hard and soft PZT ceramics are rather close and approach the upper limit value of their intrinsic properties, which are identified by dielectric properties determined by THz dielectric spectrum. The contributions by domain wall motion make up more than 50% of the quasistatic dielectric properties (measured at 100 kHz) in all studied samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

softening and hardening transitions in ferroelectric pb(zr,ti)o3 ceramics

Hysteretic and nonlinear dielectric behaviour in ferroelectric ceramics has been of interest since 1950s, when these materials found application in various electronic devices. Presently, these phenomena concern with important areas of science, technology and engineering. In particular, nonlinearity and hysteresis are the key factors in performance, precision and accuracy of modern devices. Many...

متن کامل

The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/F...

متن کامل

Effective Medium Theory for the Elastic Properties of Composites and Acoustics Applications

We derive an effective medium theory that predicts the bulk and shear moduli of composite materials consisting of a matrix material with soft or hard ellipsoidal inclusions. The theory predicts that diskshaped inclusions are most effective for softening or hardening a composite material. The theory is applied to the design of materials with highly absorptive acoustical properties. DTIC TAB0 UJn...

متن کامل

COMPARISON OF MECHANICAL AND ELECTRICAL PROPERTIES OF PIEZOELECTRIC COMPOSITES PZT/ZnO AND PZT/Al FABRICATED BY POWDER METALLURGY

Lead zirconate titanate (PZT) as a piezoelectric ceramic has been used widely in the fields of electronics, biomedical engineering, mechatronics and thermoelectric. Although, the electrical properties of PZT ceramics is a major considerable, but the mechanical properties such as fracture strength and toughness should be improved for many applications. In this study, lead monoxide, zirconium ...

متن کامل

Network Topology in Soft Gels: Hardening and Softening Materials.

The structural complexity of soft gels is at the origin of a versatile mechanical response that allows for large deformation, controlled elastic recovery, and toughness in the same material. A limit to exploiting the potential of such materials is the insufficient fundamental understanding of the microstructural origin of the bulk mechanical properties. Here we investigate the role of the netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011